
MEng Individual Project

Imperial College London

Department of Computing

Geometric Deep Learning for Subcortical
Brain Shape Analysis

Author:
Jedrzej Blaszyk

Supervisor:
Dr Ben Glocker

Second Marker:
Dr Wenjia Bai

March 6, 2023

Abstract

Magnetic Resonance Imaging (MRI) is one of the leading methods for brain analysis,
as it helps clinicians to image the structure, function, and pharmacology of the nervous
system. Geometric Deep Learning (GDL), a novel field in machine learning, has emerged
to generalize deep learning models to non-Euclidean domains, such as 3D shapes. In our
work, we survey recent developments in GDL and benchmark existing convolutional opera-
tors on classical brain modelling tasks such as biological sex prediction and age regression.
Moreover, we propose a novel convolutional operator, LocalEdgeConv, which guarantees
invariance to rotations and translations of the 3D shape, thus avoiding the need for im-
age registration. We train and evaluate our models on the UK Biobank dataset (14,503
brain scans), then we test the robustness of our approach on the Cam-CAN dataset (652
brain scans). We achieve competitive results, which substantially outperform the base-line
brain analysis methods, and show that GDL models are robust and can generalize well.
Furthermore, we benchmark the LocalEdgeConv operator on the ModelNet40 dataset and
show that, in certain scenarios, it significantly outperforms state-of-the-art methods. Our
results are not constrained to medical settings and can be easily applied to any shape
classification tasks.

Acknowledgements

I would like to thank my supervisors, Dr Ben Glocker and Dr Loic Le Folgoc, for their
guidance and support.

Further, I would like to thank my brother Piotr and my friend Eduardo for proof-reading
the report.

Lastly, I would like to thank my parents and all my friends for giving me advice throughout
the project and always supporting me.

Contents

1 Introduction 8
1.1 Objectives . 8
1.2 Challenges . 9
1.3 Contributions . 10
1.4 Report layout . 10

2 Background 11
2.1 Learning on Euclidean domains . 11

2.1.1 Convolutional Neural Networks . 11
2.1.2 Convolutional layer . 12
2.1.3 Pooling layer . 12
2.1.4 Activation function . 13
2.1.5 Fully connected layer . 13

2.2 Intrinsic and extrinsic shape descriptors . 13
2.2.1 Extrinsic features . 13
2.2.2 Intrinsic features . 14

2.3 Preliminaries of Geometric Deep Learning 14
2.3.1 Graph . 14
2.3.2 Manifold . 15
2.3.3 Point cloud . 16
2.3.4 Curvature . 16
2.3.5 Calculus on manifolds . 17

2.4 Spectral methods . 18
2.4.1 Spectral CNN . 18
2.4.2 ChebNet . 18

2.5 Spatial methods . 20
2.5.1 GCN . 20
2.5.2 GeodesicCNN . 20
2.5.3 Mixture Model Network (MoNet) . 21
2.5.4 PointNet . 22
2.5.5 PointNet++ . 23
2.5.6 Dynamic Graph CNN . 23

2.6 Comparison between spectral and spatial methods 25
2.7 Generic architecture for graph classification 25
2.8 Generic message passing scheme . 26
2.9 PyTorch Geometric . 26
2.10 UK Biobank . 26
2.11 Cam-CAN dataset . 27

2

3 Analysis of Subcortical Brain 28
3.1 Problem definition . 28

3.1.1 Role of subcortical brain . 28
3.1.2 Related work on subcortical brain 29

3.2 Analysis goals . 30
3.3 Data pre-processing . 30
3.4 Multi-layer graph convolutional network . 30

3.4.1 Network architecture . 30
3.5 Ensemble method . 34
3.6 LocalEdgeConv - convolutional operator with translation and rotation in-

variance property . 34
3.7 Shape curvature - intrinsic feature with translation and rotation invariance

property . 36
3.8 Image registration . 37

4 Evaluation 39
4.1 Evaluation setup . 39
4.2 Models trained on a single brain part . 40

4.2.1 Biological sex classification . 40
4.2.2 Age regression . 40
4.2.3 Hypertension classification . 40
4.2.4 Smoking status classification . 41
4.2.5 Single brain part models summary 41

4.3 Ensemble models . 42
4.4 Cam-CAN evaluation . 43
4.5 LocalEdgeConv benchmark - ModelNet40 47

5 Applications 49
5.1 Shape representation learning . 49
5.2 Photogrammetry . 49
5.3 Geospatial mapping . 50

6 Conclusion and Future Work 51
6.1 Future work . 52

6.1.1 Data augmentation . 52
6.1.2 Model design . 52

3

List of Figures

2.1 Typical Convolutional Neural Network architecture, used in computer vision
applications. Figure from Lecun et al. [23]. 11

2.2 Neuron of the single activation map and its local receptive field. Figure from
[5]. 12

2.3 Illustration of the difference between classical CNN (left), applied extrinsi-
cally to a 3D shape considered as a Euclidean object, and a geometric CNN
(right), applied intrinsically on the surface. The figure is from Bronstein et
al. [7]. 14

2.4 Examples of non-Euclidean constructs. 15
2.5 Manifold with normal planes in the direction of principal curvatures. The

figure is from Bhate el al. [2]. 16
2.6 Visualisation of the scalar field (left), Laplacian operator (middle) on the

manifold and the triangular mesh (right). Figure from [6]. 18
2.7 A toy example illustrating the difficulty of generalizing spectral filtering

across non-Euclidean domains. Left: a function defined on a manifold (func-
tion values are represented by color); middle: result of the application of an
edge-detection filter in the frequency domain; right: the same filter applied
on the same function but on a different (nearly-isometric) domain produces
a completely different result. The figure is from Bronstein et al. [7] 19

2.8 2D Convolution vs. Graph Convolution. Figure taken from Wu et al. [42]. . 20
2.9 Representation of the weighting functions in the local polar (ρ, θ) system

of coordinates (hand-crafted in GCNN and ACNN and learned in MoNet).
Figure is from Monti et al. [27]. 22

2.10 Illustration of a hierarchical feature learning architecture and its application
for set segmentation and classification using points in 2D Euclidean space
as an example. Figure is from Qi et al. [32] 23

2.11 EdgeConv operator: The output of EdgeConv is calculated by aggregating
the edge features associated with the edges from each connecting vertex.
Figure is from Wang et al. [38]. 24

2.12 Computing edge feature eij from a point pair (Xi, Xj). In this example
hΘ is an MLP with weights being the learnable parameters. Figure is from
Wang et al. [38]. 24

2.13 Example architecture of Dynamic Graph CNN classification model. Figure
is from Wang et al. [38]. 25

2.14 Generic architecture for graph classification. Original figure from Zhang et
al. [44]. 26

3.1 Subcortical brain with annotations. This is an example taken directly from
the UK Biobank dataset, which contains 14,503 segmented 3D shapes of
subcortical brain structures. 29

4

3.2 High-level overview of architectures employed for our experiment, compar-
ison between GCN, MoNet, EdgeConv and PointNet++.

⊕
means tensor

concatenation. For PointNet++ every sampling layer is followed by a group-
ing layer as described in the paper [31]. 31

3.3 Comparison between patch operators of a 3D shape represented as a graph
(triangular mesh) and a point cloud. Note that the receptive field of a point
cloud patch operator is dynamic and therefore can be bigger, e.g. k-nearest
neighbors grouping, where k determines the size of the patch. 32

3.4 PointNet++ convolution steps. First, farthest point sampling algorithm
samples points from the point cloud (red nodes in the 2nd step), then
PointNet convolution on node xi is performed with points within a cer-
tain threshold (dotted circle). Notice how local neighbourhood of node xi
is determined by the dotted circle. 33

3.5 Overview of the ensemble method. 34
3.6 Visualisation of translation and rotation invariant features. Let dj,i be the

dotted line. ‖dj,i‖,∠(ri,dj,i),∠(rj ,dj,i),∠(ri, rj) are invariant to any trans-
lations and rotations of the point cloud in the embedding space. 35

3.7 EdgeConvBlock operator consists of two steps. In the first step the referece
vectors are calculated from the raw XYZ coordinates. In the second step the
convolution is performed as described in Eq. 3.10. 7 stands for a message
passing operation and the rectangle stands for the feature matrix. 36

3.8 Overview of the translation and rotation invariant architecture proposed by
us.

⊕
means tensor concatenation. 36

3.9 Visualisation of the brainstem with the mean shape curvature as a feature. . 37
3.10 An overview of the differences in k-nn patch operators when using different

features. On the left: the patch includes neighbours local in the Euclidean
space. On the right: the patch includes points with similar curvatures. The
locality is determined by the metric space of the features. 37

3.11 Overview of the translation and rotation invariant architecture using the
mean curvature as the input.

⊕
means tensor concatenation. 38

4.1 A high-level overview of the training and evaluation pipeline. 39
4.2 Biological sex classification accuracy. 40
4.3 Evaluation metrics of age regression. 41
4.4 Hypertension status classification. 42
4.5 Smoking status classification. 42
4.6 Age distribution in Cam-CAN and UK Biobank datasets. 44
4.7 Visualisation of shape misalignment between scans coming from the UK

Biobank (white) and Cam-CAN (red) datasets. 44
4.8 Biological sex classification and age regression evaluation on pre-registered

Cam-CAN data. 45
4.9 Biological sex classification and age regression evaluation on Cam-CAN data

using logistic regression and LocalEdgeConv operator. 46
4.10 Biological sex classification and age regression evaluation on Cam-CAN data

using logistic regression and EdgeConv operator which uses the shape cur-
vature as the input feature. 46

4.11 Rotation axis of a 2D image and a 3D shape. The added degrees of freedom
in higher dimensions cause the number of possible rotations to increase. . . 48

5.1 Proposed architecture of the shape2vec model. 49
5.2 Street map obtained using the photogrammetry technique. Image taken

from the DroneDeploy website [13]. 50

5

5.3 LiDAR scanner output representation the surroundings [20]. 50

6

List of Tables

2.1 CNN, GCN and GCNN as a particular setting of this framework. Table
adapted from Monti et al. [27]. σ̄ρ, σ̄θ, ū denote fixed parameters of the
weight functions. 22

2.2 Possible choices for function h with their properties. 25

3.1 Subcortical brain parts and their roles. 29

4.1 Comparison of the average neighbourhood size across the models. In the
graph representation (triangular mesh), every node has on average 5.98
neighbours. For point cloud methods the neighbourhood size can vary. For
EdgeConv, we used used k-nn algorithm, with k equal to 20, to determine
the neighbourhood as suggested in the original paper. For PointNet++ we
took up to 64 neighbours within certain distance from the node, this was
also a default parameter in the original paper. 43

4.2 Performance summary of ensemble models for sex classification. The "Change"
column represents the change over the best performing single brain part model. 43

4.3 Performance summary of ensemble models for age regression. The "Change
in MAE" column represents the change over the best performing single brain
part model. 43

4.4 Classification results on ModelNet40. 47
4.5 Classification results on ModelNet40. Each shape is randomly rotated and

shifted. 47

7

Chapter 1

Introduction

From the ancient Egyptian mummifications to 18th-century scientific research on "glob-
ules" and neurons, there is evidence of neuroscience practice throughout the early periods
of history. It took several thousand years for the human race to learn that the seat of intel-
ligence in humans is the brain and not the heart. Only in the advent of the Renaissance,
did doctors realise the importance of the human brain. Since then, the scientific world
has been able to progressively deepen its research. It’s now common knowledge that the
subcortical brain regions have a pivotal role in the cognitive, affective, and social functions
in humans.

Neuroimaging techniques, such as MRI scans, are leading methods for the analysis
of the brain. These methods help modern doctors to image the structure, function, and
pharmacology of the nervous system. MRI came to dominate brain mapping due to its low
invasiveness, lack of radiation exposure, and relatively wide availability. Clinicians can use
brain scans to perform a neurological examination or to locate cancerous tissue growths
causing lesions.

The advent of machine learning (ML) and computer vision allowed healthcare to benefit
substantially. Nowadays, ML models often help clinicians with brain scan analysis, as they
match or even surpass the human-level performance [29].

Although the existing, conventional models already excel at various benchmarks, we
believe that we should never cease experimenting with novel approaches to the brain anal-
ysis problem. One of such new fields, Geometric Deep Learning, is the main focus of our
work.

1.1 Objectives

Geometric deep learning (GDL), a term first proposed by Bronstein et al. [7], has emerged
aiming to generalize deep learning models to non-Euclidean domains. These novel tech-
niques have been successfully used for building recommender systems [28], fake news de-
tection [40], protein function prediction [17], and detection of cancer-beating molecules
in food [36]. GDL owes its success to the fact that it operates directly on the relational
structure of a given problem. An example of such a structure is a graph. It can describe
various concepts ranging from a social network to a chemical compound.

Recent progress has demonstrated the applicability of GDL in tasks involving learning
on 3D objects directly. It laid the foundations for 3D shape classification and 3D shape
correspondence tasks. We take recent work on GDL and apply it to the medical setting
for brain shape analysis. To the best of our knowledge, this is a pioneer work in surveying
and implementing various GDL techniques for the analysis of brain geometry.

In our work, we explore different ways in which we can represent a 3D shape and eval-
uate existing architectures on a few benchmark brain modelling tasks (e.g. biological sex

8

prediction and age regression). Moreover, we investigate the correlation of brain geome-
try with certain conditions: hypertension and long-term smoking. We make contributions
by introducing a novel convolutional operator, LocalEdgeConv, which avoids the need for
shape pre-alignment, because it operates on the shapes’ intrinsic features. We benchmark
our method on ModelNet40 and show that, in certain scenarios, our work substantially
outperforms state-of-the-art methods.

For our work, we use data coming from the UK Biobank, which contains roughly 15,000
brain scans. Moreover, we use scans coming from the Cam-CAN dataset to evaluate the
robustness of the proposed methods. For benchmarking the LocalEdgeConv operator, we
use data coming from the ModelNet40 dataset [41].

The results of our work need not be constrained to the medical setting, and can be
easily applied to any shape recognition task – such as the geospatial mapping, using LiDAR
scanners.

To complete our project, we have split it into several sub-tasks:

1. Investigate Geometric Deep Learning techniques and identify which are suitable for
our work.

2. Preprocess the UK Biobank and Cam-CAN datasets into graph and point cloud
representations.

3. Compare several different Geometric Deep Learning models trained and evaluated
on UK Biobank dataset.

4. Propose a translation- and rotation invariant-operator, LocalEdgeConv, which achieves
good performance on the UK Biobank dataset. This model enables us to avoid doing
3D shape registration.

5. Verify that our models are robust and generalize well to scans coming from a different
dataset (Cam-CAN).

6. Benchmark LocalEdgeConv on the ModelNet40 dataset and evaluate its performance.

1.2 Challenges

During the project, we found the following to be the biggest challenges:

1. Access to powerful hardware. This project involves training deep neural net-
works, which require powerful GPUs for training. The departmental machines are
shared among many students also working on their projects and therefore access to
resources was limited.

2. Training times. Training times vary from model to model and are between 45min
and 24hrs. It was a limiting factor when it came to hyperparameter search and
exploring different architectures for shape classification.

3. Lack of domain knowledge. Medical imaging and brain analysis require a domain
knowledge. Although not strictly required when training models, lack of domain
knowledge may be a drawback compared to other research and might hinder the
performance of our methods.

9

1.3 Contributions

1. Survey and benchmark multiple methods suitable for brain analysis. We
carry out an extensive survey of different GDL architectures and decide which ones
are the most suitable for learning on 3D objects.

2. Define LocalEdgeConv: rotation and translation invariant convolutional
operator. We propose a novel convolutional operator, which avoids the need to
pre-register shapes coming from different sources. This is because our operator is
designed to be translation- and rotation-invariant.

3. Demonstrate how our architecture can be applied to different datasets.
We build a pipeline which allows us to apply our models on brain scans coming from
arbitrary datasets.

1.4 Report layout

Chapter 2 focuses on the advances in Geometric Deep Learning for object classification and
outlines the models specific to medical imaging. A brief comparison of different approaches,
and motivation behind them, can also be found in this chapter.

The main body is split into three chapters. Chapter 3 focuses on how to apply GDL to
brain shape analysis. It introduces and explains the architectures used in our evaluation. It
talks about the issues arising from using different datasets; that is, the added complexity of
image registration. The novel translation- and rotation-invariant architecture, dubbed Lo-
calEdgeConv, is also presented in this chapter. Chapter 4 first evaluates the performance
of different architectures on the UK Biobank dataset, showing how some architectures
significantly outperform the baseline method. It is shown that our novel convolutional op-
erator avoids the need to perform any shape registration and guarantees robustness to data
coming from different sources. In this chapter we benchmark and evaluate LocalEdgeConv
operator on the ModelNet40 dataset.

Chapter 5 presents potential real-world applications of our findings.
Chapter 6 concludes this report by summarising the work which was done and suggests

several areas of future research.

10

Chapter 2

Background

Data represented in non-Euclidean domains is used extensively within computer science
and related fields. Examples of such data include social networks, 3D computer shapes,
recommender systems, citation graphs, or molecular graph structures. All of those exam-
ples and many more can be formulated as graphs or manifolds which capture interactions
(edges) between individual units (vertices). For those purposes, Geometric Deep Learning
– a term coined by Bronstein et al. [7] – has emerged aiming to generalize deep learning
models to non-Euclidean domains.

In this chapter we provide preliminaries to Geometric Deep Learning and survey current
state-of-the-art approaches for graph classification.

2.1 Learning on Euclidean domains

The classical notion of deep learning has been developed in Euclidean domains. In this
section, we provide a brief overview of Convolutional Neural Networks (CNN). Knowledge
of these will serve as a stepping stone in understanding models on non-Euclidean domains.

2.1.1 Convolutional Neural Networks

Convolutional Neural Networks are a class of deep neural networks. They are characterized
by their shared-weights architecture and shift-equivariance. They are commonly used in
image and video recognition, natural language processing and image classification [45].

Figure 2.1: Typical Convolutional Neural Network architecture, used in computer vision
applications. Figure from Lecun et al. [23].

11

2.1.2 Convolutional layer

A CNN typically consists of several convolutional layers. Each convolutional layer is made
up of a set of learnable filters (also known as kernels) and is of the form g = Cr(f). It acts
on a p-dimensional input f(x) = (f1(x), ..., fp(x)) by applying a set of filters Γ = (γl,l′)
where l = 1, ..., q, l′ = 1, ..., p and a point-wise linearity ξ,

gl(x) = ξ

(
p∑

l′=1

(fl′ ∗ γl,l′)(x)

)
(2.1)

which produces a q-dimensional output g(x) = (g1(x), ..., gq(x)) – referred to as feature
maps (See Fig. 2.1).

Feature maps are stacked along the depth dimension to form the output volume of
the convolution layer (See Fig. 2.2). CNNs exploit spatially-local correlation by enforcing
a local connectivity pattern between neurons of adjacent layers, so that each neuron is
connected to a small region of the input. Such an architecture ensures that the learnt filters
produce the response to a spatially-local input pattern. Weight sharing of convolution
operation, another characteristic feature of CNNs, controls the number of free parameters
and makes the CNN parameters more efficient compared to Multi-Layer Perceptron (MLP)
networks. Parameter sharing makes CNNs translation equivariant and allows the operator
at each layer to have a constant number of parameters, independent of the input size n.
The convolution operation may be further categorized into different classes – based on the
type and size of filters, type of padding, and the direction of convolution [23].

Figure 2.2: Neuron of the single activation map and its local receptive field. Figure from
[5].

2.1.3 Pooling layer

One limitation of feature maps is that they respond to the precise position of features on
the input (See Fig. 2.2), meaning that a small perturbation in the position of a feature
on the input image can result in a different feature map. This can happen with cropping,
shifting, or with other small changes on the input image. An effective approach to fixing this
problem is called pooling. It works by partitioning the input into a set of non-overlapping
rectangles and, for each of these rectangles, producing an output of a single scalar value
(e.g. the maximum). The intuition is that the exact location of a feature is less important
than its rough location, relative to other features. The pooling layer serves to progressively

12

reduce the spatial size of the representation and decrease the number of parameters, thereby
lowering the computational cost of training the network and controlling over-fitting.

The pooling operation g = P (f) is defined as:

gl(x) = P ({fl(x′) : x′ ∈ N(x)}), l = 1, ..., q (2.2)

where N(x) ⊆ Ω is a neighborhood around x and P is a permutation-invariant function,
such as the Lp-norm (the choice of p = 1, 2 or ∞ results in average-, energy-, or max-
pooling respectively) [7].

2.1.4 Activation function

The activation is a nonlinear transformation that is done over the input signal, using an
activation function. The transformed output is then sent to the next layer of neurons as
input. With the non-linearities introduced by the activation function, the neural network
is capable of expressing complex non-linear models.

One of the most commonly used activation functions is Rectified Linear Unit (ReLU).
It was first used for deep learning in Restricted Boltzman Machines by Nair et al. [30] and
is defined as follows:

ReLU(x) = max(0, x) (2.3)

Exponential Linear Unit (ELU) is another activation function. According to Clevert
et al., it speeds up learning in deep neural networks and leads to higher classification
accuracies [10] and is therefore widely used in our work. It is defined as:

ELU(x) =

{
x x > 0

α(ex − 1) x ≤ 0
(2.4)

where α is a hyperparameter. In PyTorch, it defaults to α = 1 and that is what we use in
our work.

2.1.5 Fully connected layer

The main objective of a fully connected layer in CNNs is to take the result of the convolution
and pooling layers and use it to classify the data (e.g. image) into a class (See Fig. 2.1).

2.2 Intrinsic and extrinsic shape descriptors

The substantial success of deep learning, especially CNNs, in computer vision has led to
a big interest in applying these methodologies to geometric problems – like shape classi-
fication, graph signal processing or graph clustering. There are two ways, intrinsic and
extrinsic, to reason about the geometrical properties of 3D shapes. To the best of our
knowledge, the best performing shape classification architectures use a combination of
both [38], [32], [31].

2.2.1 Extrinsic features

Extrinsic approaches treat the geometric data as structures embedded in a Euclidean space.
The main problem with this paradigm is that it’s not invariant to shape perturbations,
like rotations or deformations (see Fig. 2.3). It is challenging to develop successful models

13

which use only extrinsic descriptors as features, since they would require a huge dataset
given the number of possible rotations of the shape. The problem can be alleviated by
assuming the shapes are aligned (e.g w.r.t. an axis).

2.2.2 Intrinsic features

Intrinsic approaches try to apply learning techniques to geometric data by generalizing the
main ingredients, such as convolutions, to non-Euclidean domains. For example, reasoning
about a 3D shape as a topological space of itself (rather than embedding it in a Euclidean
space) is an intrinsic approach. In an intrinsic representation, the filter is applied on the
very surface of some data – thus being independent of the embedding of the construction
(see Figure 2.3).

Figure 2.3: Illustration of the difference between classical CNN (left), applied extrinsically
to a 3D shape considered as a Euclidean object, and a geometric CNN (right), applied
intrinsically on the surface. The figure is from Bronstein et al. [7].

2.3 Preliminaries of Geometric Deep Learning

Here we present and explain the main concepts of Geometric Deep Learning. Our work
will build on the notions introduced in this section.

2.3.1 Graph

A graph G is a pair (V,E), with a finite set of vertices V = {v1, ..., vn}, |V | = n and a
finite set of edges E ⊆ V × V , |E| = m. A graph can be represented by an adjacency
matrix W of size n× n, where:

14

(a) Point cloud of a brain stem (b) Triangular mesh of a brain stem

(c) Graph representing the social network of a university karate club, taken from [43].

Figure 2.4: Examples of non-Euclidean constructs.

W [i, j] =

{
1 if there is an edge connecting vi and vj ,
0 otherwise

(2.5)

2.3.2 Manifold

A manifold is a space that is locally Euclidean. Around point x ∈ X, the manifold is
homeomorphic to a d-dimensional Euclidean space referred to as the tangent space and
denoted by TxX. An inner product 〈., .〉TxX : TxX ×TxX → R, depending smoothly on x,
is called the Riemannian metric [27]. Attributes which are expressible entirely in terms of
Riemannian metric, and are therefore independent of the way the surface is embedded, are
called intrinsic. Such quantities are invariant to isometric deformations [4]. A Riemannian
metric makes it possible to define several geometric notions on a Riemannian manifold –
such as area of a surface, higher-dimensional analogues like volume and intrinsic curvature
of the manifold itself.

In computer graphics, shapes are represented as discrete 2-dimensional manifolds em-
bedded in R3. A discrete manifold has vertices uniformly sampled from the surface it
is trying to represent, with edges expressing the local structure of the shape. In order
to preserve the geometry of the underlying continuous manifold, a discrete manifold is a
polyhedral surface of small adjacent faces (triangles). Each face F ∈ V × V × V and each
edge is shared by exactly two triangular faces [7]. The tuple (V,E, F) is referred to as a
triangular mesh. See Fig. 2.4b.

15

2.3.3 Point cloud

From a data structure point of view, a point cloud is an unordered set of vectors. From a
computer vision perspective, it is represented as a set of 3D points {Pi|i = 1, ..., n} – where
each point Pi is a vector of (x, y, z) coordinates plus extra feature channels, such as color,
normal, curvature etc. For object classification, the input point cloud is either directly
sampled from a shape or pre-segmented from a scene point cloud. Point clouds provide a
flexible geometric representation, suitable for countless applications in computer graphics
and comprise the raw output of most 3D data acquisition devices (like LiDAR sensors
mounted on autonomous vehicles). Hand-designed features on point clouds have long been
used, however, the recent overwhelming success of CNNs in image analysis suggests the
value of adapting insights from CNN to point clouds. See Fig. 2.4a for a point cloud
sampled from the surface of a 3D shape.

2.3.4 Curvature

Shape curvature is an important concept for our work. At any point on the surface of a
manifold, we can define a normal vector orthogonal to the surface. The planes containing
the normal vector are called normal planes. The intersection of a normal plane with
the surface forms a curve called a normal section and it is the normal curvature. The
maximum and minimum curvatures of the sections, at a given point, are called the principal
curvatures: κ1, κ2. The Gaussian curvature is the product of the two principal curvatures
K = κ1κ2. The mean curvature is given by the arithmetic mean of the two principal
curvatures: H = 1

2(κ1 + κ2).

Figure 2.5: Manifold with normal planes in the direction of principal curvatures. The
figure is from Bhate el al. [2].

Curvature is an intrinsic property of the surface, meaning it does not depend on the
particular embedding of the surface or the shape. If the shape is translated or rotated in
the embedding space, the curvature at any given point will not change. This property is
an important concept when designing architectures that are invariant to translations and
rotations.

16

2.3.5 Calculus on manifolds

The Laplacian operator ∆ : L2(X)→ L2(X), is defined as:

∆f = −div(∇f) (2.6)

where div is divergence and ∇ is the gradient operator. The gradient operator ∇f :
L2(X) → L2(TX) is similar to the classical notion of the gradient defining the direction
of the steepest change of the function at a point, with the only difference being that the
direction is now a tangent vector. The divergence operator div : L2(TX) → L2(X) is
acting on tangent vector fields and (formal) adjoint to the gradient operator [33]. Note
that the Laplacian operator is intrinsic, as it is expressed solely in terms of the Riemannian
metric. Intuitively, the Laplacian of f on a manifold is the difference between f(x) and
the average value of f around x. (See Fig. 2.6b)

Discrete Laplacian operator In computer graphics, 3D shapes are represented in the
form of a triangular mesh (V,E, F) – that is why it is useful to define the discrete Laplacian
operator. Let’s associate a weight ai > 0 with each vertex i ∈ V , and a weight wij ≥ 0
with each edge (i, j) ∈ E.

Real functions f : V → R and F : E → R on the vertices and edges of the graph are
the discrete analogy to scalar and tangent vector fields.

The graph gradient is an operator ∇ : L2(V) → L2(E), mapping functions defined on
vertices to functions defined on edges:

(∇f)ij = fi − fj (2.7)

The graph divergence is an operator div : L2(E)→ L2(V) defined as:

(divF)i =
1

ai

∑
j:(i,j)∈E

wijFij (2.8)

The graph Laplacian is an operator ∆ : L2(V) → L2(V), defined as ∆ = −div(∇).
Combining Eq. 2.7 and 2.8, we have

(∆f)i =
1

ai

∑
j:(i,j)∈E

wij(fi − fj) (2.9)

Eq. 2.9 captures the intuitive geometric interpretation of the Laplacian: the difference
between the local average of a function around a point and the value of the function at the
point itself.

We can write Eq. 2.9 in matrix-vector notation. By denoting W = (wij) as an n × n
matrix of edge weights, A = diag(a1, ..., an) the diagonal matrix of vertex weights, and
D = diag(

∑
j:j 6=iwij) the degree matrix, the graph Laplacian application to a function

f ∈ L2(V) represented as a column vector f = (f1, ..., fn)T is expressed as:

∆f = A−1(D −W)f (2.10)

Setting A as A = I in Eq. 2.10 is called unnormalized graph Laplacian. In this
case the unnormalized graph Laplacian ∆ is a real symmetric positive semidefinite matrix
that has complete set of orthogonal eigenvecotrs, which we denote by Φ = (Φ1, ...,Φn) .
These eigenvectors have associated real, non-negative eigenvalues λ1, ..., λn, which satisfy
∆Φi = λiΦi, for i = 1, ..., n.

17

(a) Scalar field (b) Laplacian operator (c) Triangular mesh

Figure 2.6: Visualisation of the scalar field (left), Laplacian operator (middle) on the
manifold and the triangular mesh (right). Figure from [6].

2.4 Spectral methods

Given a weighted graph, one way to generalize a convolutional architecture is to look at
linear operators that commute with the graph Laplacian. This property implies operating
on the spectrum of the graph weights, given by the eigenvectors of the graph Laplacian [7].

2.4.1 Spectral CNN

Spectral convolutional layer was defined by Bruna et al. [8] as

gl = ξ

(
p∑

l′=1

Φkgθl,l′ (Λ)Φk
T fl′

)
(2.11)

where (f1, ..., fp) and (g1, ..., gq) represent the p- and q-dimensional input and output sig-
nals on the vertices of the graph, gθl,l′ (Λ) is a k× k diagonal matrix of spectral multipliers
representing a filter in the frequency domain, Φk represents the first k Laplacian eigenvec-
tors sorted by eigenvalues from lowest to highest (λ1 ≤ ... ≤ λk ≤ ... ≤ λn), and ξ is a
nonlinearity applied on the vertex function values.

For spectral methods, the choice and design of spectral filter influences the computa-
tional complexity and the number of parameters in the convolutional layer, which affects
the network performance.

Because the eigendecomposition of the Laplacian matrix is needed to obtain Φk, Spec-
tral CNN faces some limitations. First, the eigendecomposition is of O(n3) computational
complexity. Second, any perturbation in the graph results in a change to its eigenbasis.
Third, the learned filters are dependent on the domain, meaning they cannot be applied
to a graph with a different structure [42]. It means that if we have a filter w.r.t. a basis
Φk, and then apply it on another domain with different basis Ψk, the filter might not work
as expected (see Fig. 2.7).

2.4.2 ChebNet

The Chebyshev polynomials are defined by the recurrence relation:

Tj(λ) = 2λTj−1(λ)− Tj−2(λ) (2.12)
T0(λ) = 1

T1(λ) = λ

Chebyshev Spectral CNN (ChebNet) approximates the spectral filter by Chebyshev
polynomials of the diagonal matrix of eigenvalues [11]. We know that a polynomial of the

18

Figure 2.7: A toy example illustrating the difficulty of generalizing spectral filtering across
non-Euclidean domains. Left: a function defined on a manifold (function values are rep-
resented by color); middle: result of the application of an edge-detection filter in the
frequency domain; right: the same filter applied on the same function but on a differ-
ent (nearly-isometric) domain produces a completely different result. The figure is from
Bronstein et al. [7]

Laplacian acts as a polynomial of the eigenvalues. Therefore, it is possible to represent the
filters via a polynomial expansion, instead of spectral multipliers (Spectral CNN):

gθ(∆) = Φgθ(Λ)ΦT corresponding to: gθ(λ) =
r−1∑
j=0

θjλ
j (2.13)

We have that θ is the r-dimensional vector of polynomial coefficients and gθ(Λ) =
diag(gθ(λ1), ..., gθ(λn)) is a diagonal matrix of spectral multipliers, resulting in filter ma-
trices gθl,l′ (Λ) whose entries have an explicit form in terms of the eigenvalues. A filter can
therefore be parameterized uniquely as an expansion with order r − 1:

gθ(∆̃) =

r−1∑
j=0

θjΦTj(Λ̃)ΦT =

r−1∑
j=0

θjTj(∆̃) (2.14)

where ∆̃ = 2λn
−1∆ − I and Λ̃ = 2λn

−1Λ − I is a rescaling of the Laplacian eigenvalues
from the interval [0, λn] to [−1, 1], since Chebyshev polynomials form an orthogonal basis
in [−1, 1].

The convolutional layer is then defined as:

gl = ξ

 p∑
l′=1

r−1∑
j=0

θjTj(∆̃)fl′

 (2.15)

The computational complexity of this procedure is O(rn) = O(n), as there is no need
to compute the forward and backward Fourier transforms. We also do not need to compute
the eigendecomposition of the Laplacian ∆, which is an improvement over Spectral CNNs.

19

2.5 Spatial methods

The issues with spectral approaches (see Fig. 2.7) can be tackled by using methods that
extract representations from local Euclidean neighborhoods on discrete manifolds. The
spatial convolution is considered a more versatile method for learning on non-Euclidean
structures.

(a) 2D Convolution on an image (b) Graph Convolution

Figure 2.8: 2D Convolution vs. Graph Convolution. Figure taken from Wu et al. [42].

Spatial methods define graph convolutions based on a node’s spatial relations, which
is analogous to the convolution operation on a classical CNN. Images can be considered a
special form of a graph with each pixel representing a node, connected to each neighbouring
pixels. A filter would be applied on the patch of the image including the pixel and its
neighbouring nodes. Similarly, spatial methods convolve a given node’s features, using
a patch operator, with its neighbors’ features (See Fig. 2.8b). The intuition about the
spatial graph convolutions is that this operation propagates and updates node features
along edges.

2.5.1 GCN

Kipf et al. [22] simplified the Chebyshev polynomial of order r − 1 further, by assuming
r = 2 and λn ≈ 2:

gl = ξ

(
p∑

l′=1

α0fl′ + α1(∆− I)fl′

)
= ξ

(
p∑

l′=1

α0fl′ + α1D
−1/2WD−1/2fl′

)
(2.16)

where W̃ = W + I (adding self loops) and D̃ = diag(
∑

j 6=i w̃ij).
The intuition of this method is that it can alleviate the problem of overfitting on local

neighborhood structures for graphs with very wide node degree distributions, such as social
networks, citation networks and many other real-world graph datasets. The computational
complexity of this approach is also O(n), similar to ChebNets. Both apply simple filters
acting on the r- or 1-hop neighborhood of the graph in the spatial domain.

2.5.2 GeodesicCNN

Masci et al. [26] proposed the first intrinsic version of convolutional neural networks,
Geodesic CNN (GCNN), on manifolds applying filters to local patches represented in
geodesic polar coordinates. Since manifolds come with a low-dimensional tangent space

20

at each point, it follows naturally to work in a local system of coordinates in the tangent
space. In particular, on two-dimensional manifolds (like 3D shapes) one can create a polar
system of coordinates around x where the radial coordinate is given by some intrinsic dis-
tance ρ(x′) = d(x, x′), and the angular coordinate θ(x) is obtained by ray shooting from a
point at equispaced angles. The patch operator in GCNNs is defined on discrete manifold
as follows:

(D(x)f)(ρ, θ) =
∑

y∈N(x)

vρ,θ(x, y)f(y) (2.17)

The patch operator D(x)f maps values of function f to polar coordinates ρ, θ. Then the
intuition behind the convolution operator is that it is a matching a template g(ρ, θ) with
the extracted patch at each vertex of the discrete manifold, where the maximum is taken
over all possible rotations of the template in order to resolve the origin ambiguity in the
angular coordinate. The geodesic convolution is defined for manifolds as follows

(f ∗ g) = max
∆θ∈[0,2π)

∫ 2π

0

∫ ρmax

o
g(ρ, θ + ∆θ)(D(x)f)(ρ, θ)dρdθ (2.18)

The weighting functions v localized around ρ, θ, in this case, can be obtained as a product
of Gaussians:

vij(x, x
′) = e−(ρ(x′)−ρi)2/2σρ2e−(θ(x′)−θj)2/2σθ2 (2.19)

where i = 1, ..., J and j = 1, ..., J ′ denote the indices of the radial and angular bins,
respectively. The resulting JJ ′ weights are bins of width σp × σθ in polar coordinates.

2.5.3 Mixture Model Network (MoNet)

Monti et al. [27] proposed a general construction of patches by defining a local system of
d-dimensional pseudo-coordinates u(x, y) around each point x.

Each pseudo-coordinate is put through a weighting function, which provides the effect
of a traditional image convolution kernel. Learning the filters and the patch operators
affords additional degrees of freedom for the architecture, which makes it a state-of-the-
art approach in several applications. In the case of a Gaussian Mixture Model (GMM)
convolution, the weighting function is a set of parametric kernels v1(u), ..., vJ(u) with
learnable parameters that operates on the pseudo-coordinates. The patch operator D(x)f
can be written as follows:

Dj(x)f =
∑

y∈N(x)

vj
(
u(x, y)

)
f(y), j = 1, ..., J (2.20)

where J represents the dimensionality of the patch on a discrete manifold. Then, a general
convolution operator is defined by a template-matching procedure:

(f ∗ g) =

J∑
j=1

gjDj(x)f (2.21)

where one of the possible kernels can be a Gaussian kernel [27]:

21

vj(u) = e−
1
2

(u−µj)TΣj
−1(u−µj) (2.22)

where d× d covariance matrices Σ1, ...,ΣJ and d× 1 mean vectors µ1, ..., µJ are learnable
parameters of the kernels. The choice of a Gaussian kernel makes Eq. 2.20, 2.21 a Gaussian
Mixture Model.

Method Pseudo-coordinates u(x, y) Weight function wj(u)

CNN Local Euclidean y − x δ(u− ūj)

GCN Vertex degree deg(x), deg(y) (1− |1− 1√
u1
|)(1− |1− 1√

u2
|)

GCNN Local polar geodesic ρ(x, y), θ(x, y) exp(−1
2(u− ūj)T

(
σ̄2
ρ

σ̄2
θ

)
(u− ūj))

Table 2.1: CNN, GCN and GCNN as a particular setting of this framework. Table adapted
from Monti et al. [27]. σ̄ρ, σ̄θ, ū denote fixed parameters of the weight functions.

Several CNN-type Geometric Deep Learning methods on graphs and manifolds can be
obtained as a particular setting of the proposed framework with an appropriate definition
of u and w(u), see Table 2.1. For example, these methods can be applied on general graphs
using the pseudo-coordinates x as the features, such as vertex degree, making it effectively
a GCN. Fig. 2.9 shows how patch operator kernel functions vj(u) of GCNN, ACNN
(Anisotropic CNN [3]) and MoNet are used in different generalizations of convolutions on
manifolds. Note that for GeodesicCNN the kernels were fixed, whereas for MoNets the
kernels are trained.

Figure 2.9: Representation of the weighting functions in the local polar (ρ, θ) system of
coordinates (hand-crafted in GCNN and ACNN and learned in MoNet). Figure is from
Monti et al. [27].

2.5.4 PointNet

PointNet is an architecture proposed by Qi et al. [31]. It is a continuous set function
approximator, designed to work on point clouds. Formally, given an unordered point set
{x1, x2, ..., xn} with xi ∈ Rd, one can define a set function f : X → R that maps a set of
points to a vector:

f(x1, x2, ..., xn) = γ

(
MAX
i=1,...,n

{h(xi)}
)

(2.23)

where γ and h are Multi-Layer Perceptron (MLP) networks. The function f in Eq. 2.23
is invariant to permutations of points in the set. The response of h can be interpreted as
the spatial encoding of a point.

22

In contrast with operators like GCN or MoNet, the patch operator in PointNet is not
constrained by the local connectivity of vertices, because point clouds don’t have a notion
of edges. The patch operator in PointNet assumes that the neighboring points form a
meaningful subset, since all the points are from a space with a distance metric. Therefore,
the model captures local structures from nearby points, and the combinatorial interactions
among local structures.

2.5.5 PointNet++

PointNet++ architecture by Qi et al. [32] builds atop the original PointNet framework.
It introduces hierarchical feature learning, to address the PointNet’s inability to capture
local context at different scales.

Figure 2.10: Illustration of a hierarchical feature learning architecture and its application
for set segmentation and classification using points in 2D Euclidean space as an example.
Figure is from Qi et al. [32]

The hierarchical structure is composed of a number of set abstraction levels, see Fig.
2.10. At each level, a set of points is processed and abstracted to produce a new set with
fewer elements. The set abstraction level is made of three key layers: Sampling layer,
Grouping layer and PointNet layer.

The Sampling layer selects a set of points from input points which defines the centroids
of local regions. Given input points {x1, x2, ..., xn}, the iterative farthest point sampling
(FPS) is used to choose a subset of points {xi1 , xi2 , ..., xim}, such that xij is the most
distant point, in terms of metric, from the set {xi1 , xi2 , ..., xij−1} with regard to the rest of
the points.

Grouping layer then constructs local region sets by finding “neighboring” points around
the centroids.

PointNet layer uses a mini-PointNet networks to encode local region patterns into
feature vectors.

2.5.6 Dynamic Graph CNN

Dynamic Graph CNN, by Wang et al. [38], draws inspiration from PointNet and convo-
lutional operations, but instead of working on individual points, it exploits the geometric
structure by constructing a local neighboring graph and applying convolution-like opera-
tion on the edge connecting the neighborhood pair of points. It therefore has the property

23

of translation-invariance and non-locality. This convolutional operator is referred to in the
paper as Edge Convolution (EdgeConv).

In this approach the graph is not fixed, and rather it is dynamically updated after each
layer of the network. It means that the set of the k-nearest neighbors of a point changes
after each layer. This property leads to nonlocal diffusion of information throughout the
point cloud.

Figure 2.11: EdgeConv operator: The output of EdgeConv is calculated by aggregating
the edge features associated with the edges from each connecting vertex. Figure is from
Wang et al. [38].

Figure 2.12: Computing edge feature eij from a point pair (Xi, Xj). In this example hΘ is
an MLP with weights being the learnable parameters. Figure is from Wang et al. [38].

Formally for a point cloud X = {x1, x2, ..., xn}, with xi ∈ RF , a directed graph G =
(V,E) representing a local point cloud structure, where V are vertices and E are edges.
G is constructed as a k-nearest neighbour graph of X in RF . Edge feature is defined as
eij = hΘ(xi, xj), where hΘ : RF × RF → RF ′ is a non linear function with learnable
parameters Θ. EdgeConv operation applies channel-wise symmetric aggregation operation
�, like mean, max or sum, on the edge features associated with all the edges coming out
from each vertex. The result of the application of EdgeConv operator on the i-th vertex
is therefore defined as:

x′i = �
j:(i,j)∈E

hΘ(xi, xj) (2.24)

Choice of the edge function h and the aggregation operation � influences the properties
of EdgeConv operatror, see Table 2.2.

The classification model takes as input n points, calculates an edge feature set of size k
for each point at the EdgeConv layer, and aggregates features within each set to compute
EdgeConv responses for corresponding points. The output features of the last EdgeConv

24

h function Properties
hΘ(xi, xj) = θjxj
θ = (θi, ..., θk)

Classical Euclidean convolution.

hΘ(xi, xj) = hΘ(xj) Global information of the local neighboring
structure. (PointNet)

hΘ(xi, xj) = hΘ(xj − xi) Local information, considering the shape as a collection
of small patches and losing the global information.

hΘ(xi, xj) = hΘ(xi, xj − xi) Asymmetric edge function combining the global shape
structure (xi and local shape features (xj − xi).

Table 2.2: Possible choices for function h with their properties.

Figure 2.13: Example architecture of Dynamic Graph CNN classification model. Figure is
from Wang et al. [38].

layer are aggregated globally (mean or max pool) to form a 1D global descriptor, which is
used to generate classification scores for the classes.

2.6 Comparison between spectral and spatial methods

The theoretical foundation for graph spectral methods lies in graph signal processing and
therefore new ConvGNNs can be built by designing new graph signal filters. However,
spatial models are preferred over spectral models due to efficiency, generality, and flexibility
issues. Spectral models are less efficient than spatial models as they need to perform
eigendecomposition or handle the whole graph at the same time (e.g. mesh completion
scenario) [42]. Spatial models are more scalable to large graphs as they directly perform
convolutions in the graph domain via information propagation (i.e. message passing). The
computation can be performed in a batch of nodes instead of the whole graph. Moreover,
spectral models assume a fixed graph and because they rely on a graph Fourier basis they
generalize poorly to new graphs. This is because any perturbation to a graph results in
a change of eigenbasis. Spatial models perform graph convolutions locally on each node,
which allows for weight sharing across different structures and locations. Finally, spectral
methods are limited to undirected graphs whereas spatial methods can handle a bigger
variety of graphs such as edge inputs, directed graphs, signed graphs and heterogenous
graphs because of the flexibility of the aggregation function [42].

2.7 Generic architecture for graph classification

The generic convolutional architecture for graph classification is similar to the classical
CNN architecture e.g. LeNet by Lecun et al. [24]. It consists of:

• Convolutional layer. Spectral or spatial convolutional layers, e.g GCN, EdgeConv.

• Pooling layer. The layer where a vertex-wise pooling operation is applied, e.g. max-
pool, mean-pool or sort-pool [44].

25

Figure 2.14: Generic architecture for graph classification. Original figure from Zhang et
al. [44].

• Dense layers. This part of the architecture takes the result of the convolutional and
pooling layers and classifies the data.

All the architectures included in our work will follow the pattern presented in Fig. 2.14,
but they will differ in the kind of convolutional operator and the pooling operator used.

2.8 Generic message passing scheme

Message passing scheme generalizes the convolutional operator to irregular domains, it is
also known as a neighbourhood aggregation. Let’s have that x

(k−1)
i ∈ RF denotes node

features of node i in layer (k− 1) and ej,i ∈ RD denotes edge features from node j to node
i. Message passing graph neural networks can be described as

x
(k)
i = γ(k)

(
x

(k−1)
i ,�j∈N (i) φ

(k)
(
x

(k−1)
i ,x

(k−1)
j , ej,i

))
(2.25)

where � denotes a differentiable, permutation invariant function, e.g. sum, mean or max,
and γ and φ denote differentiable functions such as Multi Layer Perceptrons. All spatial
methods can be expressed in terms of a generic message passing scheme.

2.9 PyTorch Geometric

PyTorch Geometric [15] is a Geometric Deep Learning extension library for PyTorch. It is
a library for deep learning on irregularly structured input data such as graphs, point clouds
and manifolds from a variety of published papers. It consists of an easy-to-use mini-batch
loader for many small and single big graphs, multi gpu-support and a large number of
common benchmark datasets.

2.10 UK Biobank

UK Biobank (UKBB) is a major national and international health resource, and a registered
charity in its own right, with the aim of improving the prevention, diagnosis and treatment
of a wide range of serious and life-threatening illnesses – including cancer, heart diseases,
stroke, diabetes, arthritis, osteoporosis, eye disorders, depression and forms of dementia
[19].

For our work we use data collected from 14,503 subjects. For each subject we have 3D
brain scan (see Fig. 2.4b) along with a medical record.

26

2.11 Cam-CAN dataset

The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) is a large-scale collab-
orative research project at the University of Cambridge, launched in October 2010. The
Cam-CAN project uses epidemiological, cognitive, and neuroimaging data to understand
how individuals can best retain cognitive abilities into old age [34].

We use 652 brain scans from that dataset for the evaluation of our methods.

27

Chapter 3

Analysis of Subcortical Brain

Healthcare institutions generate and capture enormous amounts of data containing ex-
tremely valuable signals and information, at a pace far surpassing what traditional methods
of analysis can process. With the advent of better computer hardware and more ubiquitous
development frameworks, came the rise of Deep Learning (DL). DL was therefore able to
enter the picture, as it is one of the best ways to integrate, analyze and make predictions
based on large, heterogeneous data sets.

Brain imaging has drawn great interest among researchers in recent years, as it is used to
diagnose metabolic diseases and lesions on a finer scale. Using deep learning methodologies
– like convolutional neural networks (CNN) – has proven to be successful for tasks such as
brain tissue segmentation [12], lesion detection [46] and regression and classification models
(e.g. biological sex prediction, age regression). Nowadays, state-of-the-art models for brain
analysis use brain MRI scans as input and 3D convolutions as main operator [39]. Models
are able to accurately segment brain tissues and make predictions thereon. While those
methods perform very well, they suffer from several constraints. Firstly, different scanners
produce scans with slightly different intensity ranges and therefore a model trained on data
coming from one scanner might have issues generalising to data coming from a different
scanner. Secondly, 3D brain images need to be uniformly aligned, as the prediction coming
out of rotated brain scan might not be meaningful. Thirdly, modern CNNmodels developed
on isotropic scans cannot be easily applied to anisotropic images from different scanners.

Geometric deep learning (GDL) is a novel field in the world of machine learning. It
offers powerful techniques to develop models which can learn directly on 3D shapes (see
Section 2.7). For brain imaging purposes, we can represent the subcortical brain as a 3D
shape. Our work is to try and evaluate the usability of geometric deep learning in the area
of brain imaging. GDL operators offer benefits such as being rotation invariant, under
certain assumtpions, and are not constrained by the dimensionality of the scan.

3.1 Problem definition

3.1.1 Role of subcortical brain

Subcortical brain structures are a group of diverse neural formations deep within the brain,
which include regions such as: Hippocampus, Thalamus and Putamen. They are located
just below the cerebral cortex in the human brain and are involved in complex activities
such as memory, emotion, pleasure and hormone production. They act as information hubs
of the nervous system, as they relay and modulate information passing to different areas
of the brain [35]. Table 3.1 summarizes the roles of subcortical brain.

28

Figure 3.1: Subcortical brain with annotations. This is an example taken directly from
the UK Biobank dataset, which contains 14,503 segmented 3D shapes of subcortical brain
structures.

Brain part Role
Brainstem Conduction of information
Hippocampus Spatial information processing, temporary memory
Thalamus Relay function, controls sleep/wakefulness
Caudate Motor system control, reward function control
Amygdala Fear, anxiety, aggression control
Accumbens Cognitive processing, motivation/aversion control
Putamen Movement control
Pallidus Movement control

Table 3.1: Subcortical brain parts and their roles.

3.1.2 Related work on subcortical brain

There are numerous works investigating the correlation between the geometric properties
of the subcortical brain and human features. Wang et al. [37] suggest that the subcortical
brain volume depends on age and biological sex. Foster-Dingley el al. [16] argue that there
might be a relation between blood pressure and the shape of the subcortical brain, for
older people. Moreover, Durazzo et al. [14] show that long-term cigarette smoking might
be related with amplified age-related volume loss of the subcortical brain.

29

3.2 Analysis goals

The main goal of our work is to investigate the power of Geometric Deep Learning methods
for brain shape analysis. Our evaluation builds upon the existing work described in section
3.1.2. We focus on the following tasks:

• biological sex classification - predict biological sex from brain shape

• age regression - predict age from brain shape

• hypertension classification - predict if a subject has hypertension (blood pressure
higher than 140/90) or not (blood pressure lower than that)

• long-term smoker classification - predict if a subject is a long-term smoker, meaning
one who has smoked most or all days in the past

We will analyse the above relations in the following ways:

• Create a model for each separate brain part

• Create an ensemble model, which utilises information from all of the brain parts

3.3 Data pre-processing

Data is provided as vtk files. We first remeshed the data to a common resolution, so
that each shape class had the same amount of vertices (512). Then data was transformed
into the format supported by PyTorch Geometric [15], that is a list of vertices with their
features and the adjacency matrix. PyTorch Geometric library supports features such as,
mini-batch loader for graphs and helpful data transforms which sped up the work on this
project.

3.4 Multi-layer graph convolutional network

We compare several Geometric Deep Learning methods for the classification and regression
tasks outlined in the section 3.2. Here we provide the description of the architectures used.

We consider two approaches to reason about a 3D shape. In the first approach we treat
the triangular mesh of a shape as a graph. A graph encompasses information about the
local neighbourhood of each node (adjacency matrix), node features (e.g XYZ coordinates)
and edge attributes (e.g Euclidean or polar distances between connected nodes). The
other approach we consider is treating the 3D shape as a point cloud, where an arbitrary
number of points are sampled from the surface of the shape. In this scenario the only
piece of information we have are the features of the point. The features are usually XYZ
coordinates but they are not limited to that, as they can also include e.g. color, curvature
or normal at that point. The local neighbourhood for the patch operator is dynamically
determined e.g. k -nearest neighbours algorithm.

We benchmark 4 different methods. GCN and MoNet treat the 3D shape as a graph.
EdgeConv and PointCloud++ treat the shape as a point cloud.

3.4.1 Network architecture

We propose a multi-layer graph convolution architecture for classification and regression
tasks. Then we compare and evaluate the performance of models which are based on
different geometric deep learning operators.

30

We keep the network architectures similar. Refer to Fig. 3.2 for the high-level overview
of our approach. For GCN, MoNet and EdgeConv we used 2 convolutional layers followed
by a dense layer, a pooling operator and a final dense layer. For PoinNet++, every convo-
lution operator is preceded by farthest point sampling and grouping layers as described in
the paper.

Figure 3.2: High-level overview of architectures employed for our experiment, comparison
between GCN, MoNet, EdgeConv and PointNet++.

⊕
means tensor concatenation. For

PointNet++ every sampling layer is followed by a grouping layer as described in the paper
[31].

GCN convolution

We take a generic graph classification architecture decribed in Section 2.7. The convolu-
tional operator is a graph convolutional layer by Kipf et al. [22] described in Section 2.5.1.
This convolutional operator, can be expressed in terms of generic message passing scheme
(see Section 2.8), where:

xi
′ =

∑
j∈N (i)∪{i}

1√
deg(xi) ·

√
deg(xj)

· (xjΘ) (3.1)

where N (i) is the local 1-hop neighborhood of node xi and Θ is a learnable weight matrix.

31

Mixture Model Network (MoNet)

Here the convolution operator is GMMConv (described in detail in Section 2.5.3). We use
Euclidean distances between nodes as pseudo-coordinates required by this method. This
convolutional operator is expressed in the generic message-passing scheme as:

x′i =
1

|N (i)|
∑

j∈N (i)

1

K

K∑
k=1

wk(ei,j)�Θkxj (3.2)

(3.3)

where wk(e) = exp
(
−1

2(e− µk)>Σ−1
k (e− µk)

)
is a k-the parametric kernel with learnable

parameters µk and Σk.

(a) Patch operator at xi in a graph rep-
resenting a triangular mesh.

(b) Patch operator at xi in a point cloud
representing a 3D shape.

Figure 3.3: Comparison between patch operators of a 3D shape represented as a graph
(triangular mesh) and a point cloud. Note that the receptive field of a point cloud patch
operator is dynamic and therefore can be bigger, e.g. k-nearest neighbors grouping, where
k determines the size of the patch.

EdgeConv

EdgeConv operator is described in detail in Section 2.5.6. The main idea behind it is
constructing a local neighborhood graph and applying convolution-like operation on the
edge connecting the neighboring pair of points. It can be expressed in the generic message
passing scheme as:

x′i =
∑

j∈N (i)

hΘ(xi‖xj − xi) (3.4)

where N (i) is a dynamically determined k -nearest neighbourhood of node xi, ‖ means
feature concatenation and hΘ is a learnable function.

PointNet++ convolution

The convolution operator of PointNet++ from Section 2.5.5 consists of three layers: Sam-
pling layer, Grouping layer and PointNet layer.

The Sampling layer selects a set of points from the input points which defines the
centroids of local regions using the iterative farthest point sampling (FPS). It selects the
most distant points, in terms of metric, with regard to the rest of points. Grouping layer
then constructs local region sets by finding “neighboring” points around the centroids (see
Fig. 3.4). PointNet layer uses mini-PointNet networks to encode local region patterns into
feature vectors.

32

Figure 3.4: PointNet++ convolution steps. First, farthest point sampling algorithm sam-
ples points from the point cloud (red nodes in the 2nd step), then PointNet convolution
on node xi is performed with points within a certain threshold (dotted circle). Notice how
local neighbourhood of node xi is determined by the dotted circle.

A PointNet layer is defined as follows:

x′i = γΘ

(
max

j∈N (i)∪{i}
hΘ(xj ,pj − pi)

)
(3.5)

where γΘ and hΘ denote neural networks, i.e. MLPs, and P ∈ RN×F defines the position
of each point.

Pooling

For GCN, MoNet and EdgeConv channel-wise mean pooling operator was used. For Point-
Net++ a channel-wise max pooling was used, to keep it consistent with the implementation
in the paper. In general, a channel-wise pooling operator for graphs can be defined as:

pi = f(xi|x ∈ X) (3.6)

where pi is the pooling output for the i-th channel, X is the set of node features and f is
a permutation-invariant function such as: max, mean, min.

Activation Functions

All the activation functions used in the experiment, apart from the final activation, are
Exponential Linear Unit (ELU) functions. As mentioned in the Section 2.1.4, ELU has
better properties than the classic ReLU - according to Clevert at al. it speeds up learning
in deep neural networks and leads to higher classification accuracies [10].

The final activation functions are dependent on the task. For regression it is the identity
function. For classification we apply the log_softmax function, defined as:

σ(z)i = log
ezi∑K
j=1 e

zj
for i = 1, ..,K (3.7)

where K is the number of output classes.

33

Loss Functions

For regression we use the Mean Squared Error (MSE) loss, defined as:

MSE =
1

n

n∑
i=0

(yi − ŷi) (3.8)

where yi is a true value, the ȳi is a predicted value and n is the number of data points.
For classification we use Negative Log Likelihood (NLL) loss, defined as

NLL = −
n∑
i=1

yi log(ŷi) (3.9)

Note: combination of log_softmax activation function together with NLL loss is equivalent
to applying Cross-Entropy loss.

3.5 Ensemble method

We also consider an ensemble model, which can utilise information from all of the subcor-
tical brain parts. The high-level overview of our method is presented in Fig. 3.5. Here, the
conv architecture (a building block) for a given brain part can be replaced by any of the
models mentioned above that is: GCN, MoNet, EdgeConv and PointNet++. Each building
block returns an embedding of a given brain part, then the embeddings are concatenated
into a vector, which is passed to MLP to produce the output.

Figure 3.5: Overview of the ensemble method.

3.6 LocalEdgeConv - convolutional operator with translation
and rotation invariance property

In the medical setting it is often the case that different datasets are not aligned in the
Euclidean space. A common solution is the process of image registration, which transforms
data into a common position, scale and orientation. The drawback of image registration is
that it is a complicated process with many local minima and therefore it adds an additional
layer of complexity to the task.

We can avoid the image registration altogether by using the shape features which are
invariant to the location and translation. The only assumption we make is that the shapes
have the same scale, which is usually the milimeter space. If data has a different scale, the
scan metadata should easily allow to scale any two datasets accordingly.

34

LocalEdgeConv

In Table 2.2 we described the different possible choices of node features included in the
message, in the generic message passing scheme, of the EdgeConv layer. The features
suggested in the original paper, presented in the last row of this table, are [xi, xj − xi],
where x describes node features and indices i, j specify the nodes exchanging the message.
In this setting xi can be considered a global shape descriptor and the feature difference
xi − xj can be considered a local shape descriptor. We think that for a setting, where
shapes are not pre-registered, using features derived from the local descriptor xi − xj can
benefit the usability and applicability of the model.

We suggest the following translation and rotation invariant convolutional layer dubbed
by us LocalEdgeConv, which can be expressed in a generic message passing scheme as:

x′i =
∑

j∈N (i)

hΘ

(
‖dj,i‖,∠(ri,dj,i),∠(rj ,dj,i),∠(ri, rj)

)
(3.10)

where N (i) is a dynamically determined k -nearest neighbourhood of the node xi, hΘ is a
learnable function, the norm is the L2 norm, ∠(., .) is the angle between vectors, dj,i is the
distance between points xj and xi, and ri, rj are reference vectors for the points.

The reference vector r is any vector which can be uniquely computed from the local
neighbourhood of the node x. An example of a reference vector is the normal vector to
the surface at the point. In our work we don’t use the surface normal as a reference vector
because it is not straightforward to compute with the local neighbourhood message-passing
scheme. We define a reference vector as follows.

ri =
1

k

∑
j∈N (i)

(pj − pi) (3.11)

where N (i) is a dynamically determined k -nearest neighbourhood of the node xi, and the
pj and pi are the XYZ coordinates of the points xj and xi respectively.

Figure 3.6: Visualisation of translation and rotation invariant features. Let dj,i be the
dotted line. ‖dj,i‖,∠(ri,dj,i),∠(rj ,dj,i),∠(ri, rj) are invariant to any translations and
rotations of the point cloud in the embedding space.

Our implementation of LocalEdgeConv operator consists of two message passing steps.
In the first step we calculate the reference vectors r for all the points in the point cloud
(see Eq. 3.11). The second step is to perform the actual convolution from the Eq. 3.10.
Whenever we refer to the LocalEdgeConv operator we implicitly mean those two steps.

Below is the proposed rotation and translation invariant architecture. The first layer
is LocalEdgeConv layer, which is invariant to translation and rotation and works as shows
in Fig. 3.7. Then it is followed by the conventional (dynamic) EdgeConv layer with
pooling, activation and dense layers producing the final output. This model is used in our
evaluation, and we refer to it as LocalEdgeConv architecture.

35

Figure 3.7: EdgeConvBlock operator consists of two steps. In the first step the referece
vectors are calculated from the raw XYZ coordinates. In the second step the convolution
is performed as described in Eq. 3.10. 7 stands for a message passing operation and the
rectangle stands for the feature matrix.

Figure 3.8: Overview of the translation and rotation invariant architecture proposed by
us.

⊕
means tensor concatenation.

Since we are giving up the global shape descriptors there might be a decrease in the
expressive power of the original EdgeConv. This potential performance decrease is traded
for robustness of this method to translated and rotated data. In the evaluation we will
investigate this trade-off further.

3.7 Shape curvature - intrinsic feature with translation and
rotation invariance property

Another way to avoid the image registration is to use intrinsic shape features, such as the
shape curvature, which do not change with translation or rotation of the object.

We propose a pre-processing pipeline which takes the raw .vtk shape and calculates
the mean curvature at every node (see more in Section 2.3.4). The curvature calculation
method can be extended to the raw noisy point cloud data, e.g. data coming from a LiDAR
scanner, as described in [9], [18].

We evaluate this approach using this architecture, which is similar to the one used
with LocalEdgeConv operator. The input for our model is a point cloud with the mean
curvature as the single feature. Note that we do not use the XYZ coordinates in this
approach. We expect a drop in the performance because now the local neighbourhood of
a point is not based on its position, but solely on the mean curvatures. Remember that
for EdgeConv and LocalEdgeConv the local neighbourhood is determined by the k-nearest
neighbours algorithm in the feature metric space. Therefore, the patch operator will select
the points with similar mean curvatures. The comparison between the patch operators is
summarised in the Fig. 4.11.

The main drawback of this method is that the mean curvature must be pre-computed
for a given shape in the current setup. Therefore, it makes it less suitable for a real-time
systems, such as data coming from the LiDAR sensor.

36

Figure 3.9: Visualisation of the brainstem with the mean shape curvature as a feature.

(a) XYZ coordinates (b) mean curvature

Figure 3.10: An overview of the differences in k-nn patch operators when using different
features. On the left: the patch includes neighbours local in the Euclidean space. On the
right: the patch includes points with similar curvatures. The locality is determined by the
metric space of the features.

3.8 Image registration

Image registration can transform the data into a common position, scale and orientation.
In the Evaluation section we investigate the robustness of the GDL models on the data
coming from the Cam-CAN dataset.

The UK Biobank and Cam-CAN scans are expressed in the same milimeter scale,
but they are non-aligned in the embedding space. There exists an affine transformation,
including translation and rotation, which allows to match those data points. The image
registration pipeline used in our work consists of finding a template shape for each part of
subcortical brain and then registering Cam-CAN to match this template.

UK Biobank template. There exists a one-to-one vertex correspondence between shapes
in the UK Biobank. The template is constructed as follow: vertex positions are the mean
of the vertex positions of given brain shape in the dataset, the vertex connectivity is
unchanged.

Shape registration. The solution for the registration of multiple 3D shapes uses unit
quaternions. It was suggested by Benjemaa et al. [1]. It aligns a given shape to the template
shape by optimising rotation and translation parameters. We use Adam optimizer with
a learning rate of 0.001. The loss is defined in terms of the point-to-surface distance,
suitable for rigid shape registration, which tries to minimize the distance between the
output reconstructed points and the input template mesh.

37

Figure 3.11: Overview of the translation and rotation invariant architecture using the mean
curvature as the input.

⊕
means tensor concatenation.

Since 3D shape registration is a very complex task on its own, our aim is not to find the
best registration pipeline. Instead, we treat this simple registration pipeline as a baseline
against which we compare our other approaches.

38

Chapter 4

Evaluation

4.1 Evaluation setup

Each model is trained for 30 epochs with a learning rate of 0.0002, mini-batch gradient
descent with a batch size of 16, and Adam [21] optimizer.

Each shape is remeshed to contain a fixed number of vertices: 512. GCN and MoNet
use the graph representation of the shape as the input, whereas EdgeConv and PointNet++
treat the shape as a point cloud.

We train separate models for each brain part, as well as ensemble models, which take
all parts of the subcortical brain as the input. Our benchmarking tasks are: biological sex
classification, age regression, hypertension classification and smoking status classification
(See Section 3.2).

We split BioBank dataset into 60/20/20 train, validation, and test subsets to perform
parameter tuning and the final evaluation.

As our naive baseline method, we use logistic regression on brain part volumes. We
did not include methods based on classical Euclidean convolutions, operating on 3D voxel-
based representation of the brain, in our evaluation due to the abundance of different
architectures. UK Biobank is a well-researched dataset and there exists work evaluating
classical approaches to the brain analysis.

As the last step, we evaluate the robustness of our methods on data coming from a
different source: the Cam-CAN dataset (see Section 2.11).

Figure 4.1: A high-level overview of the training and evaluation pipeline.

39

4.2 Models trained on a single brain part

In this section, we overview the performance of the models trained on a single subcortical
brain part.

4.2.1 Biological sex classification

In the task of biological sex classification, the Geometric Deep Learning methods substan-
tially outperformed logistic regression on brain volumes. Also, this evaluation showed that
GDL methods operating on point clouds perform better on average than methods treating
the object as a graph with XYZ features. The Thalamus proved to be the brain part most
useful for this task, with PointNet++ architecture achieving 83.7% and EdgeConv achiev-
ing 82.6% accuracy. Other parts, like Brainstem and Caudate, also had similar results. In
general, PointNet++ architecture appeared to be the best, which is probably due to the
fact that it uses sampling and grouping layers before each convolutional layer. These extra
steps allow PointNet++ to extract the most useful global shape descriptors. Brainstem,
Thalamus, and Caudate are responsible for reward function, sleep/wakefulness control, and
the conduction of information, therefore it would be interesting to research whether the un-
derlying geometrical differences have any tangible impact on the psychological differences
between sexes.

Figure 4.2: Biological sex classification accuracy.

4.2.2 Age regression

For brain age regression, the point cloud based architectures performed significantly better
than the rest, with (again) PointNet++ performing the best in terms of all metrics con-
sidered – MSE, MAE and, R2 correlation coefficient. The best MAE, of 4.53 years, was
achieved on the model trained on the Thalamus. See Fig. 4.3 for a full summary of results.

4.2.3 Hypertension classification

For the classification of hypertension, we split the dataset into 2 stratified subsets contain-
ing male and female subjects, each with similar age distribution. We consider male and
female subjects separately, because of the noticeable differences in brain geometry between
sexes (see Section 4.2.1).

For the male subset of subjects, all models had problems with finding the geometrical
traits of an advanced hypertension stage. The best result was obtained on Thalamus with

40

(a) Mean Absolute Error (b) Mean Squared Error

(c) R2 Correlation Coefficient

Figure 4.3: Evaluation metrics of age regression.

EdgeConv, yielding a classification accuracy of 57.3%. For the female subset models, we
were able to better distinguish the features correlated with hypertension, especially in brain
parts like the Accumbens, Caudate, Pallidus, and Thalamus. Models based on point cloud
representations performed better than other models, the best result was on the Pallidus
with the PointNet++ architecture – yielding an accuracy of 61.2%.

4.2.4 Smoking status classification

For the smoking status classification, we split the dataset into 2 stratified subsets containing
male and female subjects, each with a similar age distribution.

In this setting, male subjects exhibit more traits correlated to being a long-term smoker.
We observed a greater variance in the performance of GDL methods – sometimes, they
performed marginally worse than the baseline method. One possible explanation is that
long-term smoking does not have a substantial effect on the geometrical features of the
subcortical brain.

4.2.5 Single brain part models summary

In our evaluation, the GDL models outperformed the baseline volume-based logistic re-
gression. Among the GDL models, the ones operating on the point cloud representation
of a shape were able to achieve significantly better results than the graph-based models,

41

(a) Female subjects. (b) Male subjects.

Figure 4.4: Hypertension status classification.

(a) Female subjects. (b) Male subjects.

Figure 4.5: Smoking status classification.

which used triangular-mesh representation. We think that the main reason for the perfor-
mance difference is that point cloud convolutions use patch operator with arbitrarily larger
receptive field (e.g. k nearest neighbours, where k is a parameter). On the other hand,
the graph representation models use the adjacency matrix to determine the local neigh-
bourhood, which is a computationally faster approach yet it limits the performance of such
methods. Table 4.1 summarizes the comparison of the average receptive field, expressed in
terms of neighbourhood size, of each method.

We see strong dependence between the method performance and the size of the receptive
field of the shapem, and therefore argue that point cloud based methods are more suitable
techniques for tasks involving learning on geometrical structures.

4.3 Ensemble models

In this question we evaluate if there is any performance gain when using the ensemble
model. That is, a model which learns on all the parts of the subcortical brain, and not
just a single part.

For this evaluation we only consider the best performing methods (EdgeConv and
PointNet++) as well as the baseline logistic regression model. We evaluate the ensemble

42

Method Average neighbourhood size
GCN 5.98 (fixed)
MoNet 5.98 (fixed)
EdgeConv constant 20 (parameter)
PointNet++ upper bounded by 64 (parameter)

Table 4.1: Comparison of the average neighbourhood size across the models. In the graph
representation (triangular mesh), every node has on average 5.98 neighbours. For point
cloud methods the neighbourhood size can vary. For EdgeConv, we used used k-nn algo-
rithm, with k equal to 20, to determine the neighbourhood as suggested in the original
paper. For PointNet++ we took up to 64 neighbours within certain distance from the
node, this was also a default parameter in the original paper.

methods on the biological sex classification and age regression tasks.

Model Accuracy Change
Logit 73.3% +3.5%
EdgeConv 83.2% +0.6%
PointNet++ 84.3% +0.4%

Table 4.2: Performance summary of ensemble models for sex classification. The "Change"
column represents the change over the best performing single brain part model.

Model MAE Change in MAE
Logit 5.02 -0.75
EdgeConv 4.86 +0.12
PointNet++ 4.74 +0.21

Table 4.3: Performance summary of ensemble models for age regression. The "Change in
MAE" column represents the change over the best performing single brain part model.

The data in Table 4.2 and 4.3 suggests that using an ensemble of models is not defini-
tively better than using single-brain-part models. For biological sex classification, the
performance gain is noticeable for all models: Logit, EdgeConv, and PointNet++. The
gain varies between 0.4% and 3.5%. For age regression, Logit’s performance increased
the most with the MAE lowered by 0.75 years. Interestingly, EdgeConv and PointNet++
achieved worse results than the ones achieved in the single-brain-part setting. We think
that 30 epochs might be not enough for those models to converge given the number of
parameters.

4.4 Cam-CAN evaluation

In order to evaluate the robustness of the models trained on the UK Biobank dataset, we
perform an additional test on the Cambridge Centre for Ageing and Neuroscience (Cam-
CAN) dataset. Each subject in the Cam-CAN dataset has a feature set containing age and
biological sex, therefore we will evaluate our models on sex classification and age regression
tasks.

Cam-CAN dataset contains subjects with age ranging from 18 years to 88 years, whereas
the UK Biobank (UKBB) has subjects ranging from 44 years to 73 years. Also, the age
distribution is different between those two datasets (see Fig. 4.6). We will evaluate how

43

Figure 4.6: Age distribution in Cam-CAN and UK Biobank datasets.

well our models can generalize to unseen data. That is, subjects with age outside of UK
Biobank’s age range.

One of the important tasks when dealing with data coming from a different dataset is
image registration, which is the process of transforming different sets of data into a common
position, scale, and orientation. It adds a layer of complexity when building models, as it
can be the case that shape registration can create some unwanted noise within the dataset.
This is due to the fact that the loss function for shape registration has multiple local
minima; so there is no guarantee that the dataset variance will be preserved, as sometimes
the optimizer can get stuck in one of the local minima.

Without any shape pre-registration, we evaluated the sex classification models (trained
on UKBB) on Cam-CAN and the accuracy was no better than a coin flip. The reason is
that Cam-CAN and UK Biobank are not aligned, see Fig. 4.7, and therefore some form of
shape registration is required.

Figure 4.7: Visualisation of shape misalignment between scans coming from the UK
Biobank (white) and Cam-CAN (red) datasets.

In this evaluation, we will take two approaches. The first one would use a UK Biobank
template to align the Cam-CAN dataset accordingly (more details on image registration
are present in Section 3.8). The second approach would make use of local, intrinsic shape
descriptors, which are independent of shape location and rotation in the embedding space,
see Section 3.6.

44

Evaluation With Image Registration Pipeline

For this evaluation, we take two point cloud architectures, EdgeConv and PointNet++,
which were the best-performing models in the previous tests.

The results in Fig. 4.8 suggest that the models trained on the UK Biobank and eval-
uated on the preregistered Cam-CAN dataset suffer from a significant performance drop,
e.g. ≈20%, on the task of sex classification. This tendency is consistent across all the
models and brain parts that we performed the evaluation on. There are two possible ex-
planations for the performance drop. On the one hand, our models generalize poorly to
data coming from a dataset with a vastly different age distribution. On the other hand,
the complicated shape registration pipeline might be adding some unaccounted noise to
the data and therefore hinder the models’ performance.

(a) Biological sex classification accuracy. (b) Age regression MAE.

Figure 4.8: Biological sex classification and age regression evaluation on pre-registered
Cam-CAN data.

Evaluation With LocalEdgeConv Operator

Using local shape descriptors as features can benefit the robustness of the model. In our
scenario, we use LocalEdgeConv for local feature learning, which helps us avoid doing any
registration. For this evaluation, we train the LocalEdgeConv models on the UK Biobank
dataset, and perform the evaluation on both the UKBB and the Cam-CAN. We use volume-
based logistic regression as the baseline as it also uses rotation and translation invariant
feature: shape volume.

In our evaluation, summarized in Fig. 4.9, we see a much smaller performance drop in
sex classification, which is ≈5% vs ≈20% when using simple image registration. We think
that the small drop in performance can be attributed to the difference in age distribution
across datasets and the fact that Cam-CAN dataset’s age range is from 18 years to 88
years, whereas the UK Biobank is from 44 years to 73 years.

The task of age regression shows an expected performance drop. The MAE achieved on
the UKBB test split was 4.7-5.4 years, whereas the MAE on Cam-CAN was ≈14.8 years.
In our setting, we ask our model to extrapolate its predictions to the data far outside of the
training data range. Since ML models are data-driven, it is to no surprise that our model
does not perform well on this task (see Fig. 4.6 to see the age distribution difference).

For this evaluation, we conclude that the smaller performance drop in the biological sex
classification task shows that our model was able to learn sex-related geometrical features
which are not strictly correlated with the age of the subject. We also see that the models

45

(a) Biological sex classification accuracy. (b) Age regression MAE.

Figure 4.9: Biological sex classification and age regression evaluation on Cam-CAN data
using logistic regression and LocalEdgeConv operator.

trained with LocalEdgeConv operator performed significantly better than the ones which
used global shape descriptors and the shape registration pipeline.

Evaluation with shape curvature as the input feature

(a) Biological sex classification accuracy. (b) Age regression MAE.

Figure 4.10: Biological sex classification and age regression evaluation on Cam-CAN data
using logistic regression and EdgeConv operator which uses the shape curvature as the
input feature.

Another way to avoid the need for shape registration is to use the intrinsic shape
features. Intrinsic features are robust to perturbations in the orientation and the position
of the shape. For this evaluation, we use the EdgeConv model, which uses the mean
curvature as the single feature of a point. We train the model on the UK Biobank dataset
and perform the evaluation on both the UKBB and the Cam-CAN. We use volume-based
logistic regression as the baseline as it also uses rotation and translation invariant feature:
shape volume.

The results show that this method, for the sex classification task, performs on average
worse than LocalEdgeConv, for both UKBB and Cam-CAN, by about 6%. Interestingly
the performance difference, of this method, between the UKBB and Cam-CAN is about

46

5%, the same as for LocalEdgeConv. For the age regression task this method achieved
for UKBB ≈5.7 years MAE and for Cam-CAN ≈15.8 years MAE, both worse than the
results achieved by LocalEdgeConv. It shows that LocalEdgeConv makes use of intrinsic
features, which are more useful than the mean curvature of the shape. It also means that
the on-the-fly computed intrinsic features used by LocalEdgeConv are more meaningful
than the pre-computed shape curvature. The architectures and the number of parameters
are largely the same for both: LocalEdgeConv and EdgeConv with the curvature as a
feature.

4.5 LocalEdgeConv benchmark - ModelNet40

We evaluate the LocalEdgeConv model on the ModelNet40, from Wu et al. [41], classifica-
tion task, consisting of predicting the category of a previously unseen shape. The dataset
contains 12,311 meshed CAD models from 40 categories. 9,843 models are used for training
and 2,468 models for testing. We follow the experimental settings of Qi et al. [32]. For
each model, 1,024 points are uniformly sampled from the mesh faces. The point cloud is
rescaled to fit into the unit sphere. Only the (x, y, z) coordinates of the sampled points
are used, and the original meshes are discarded.

We use mini-batch gradient descent with Adam optimizer with the learning rate of
0.0005. The batch size is set to 20. LocalEdgeConv has the local neighbourhood limited
to k = 20 neighbours. We train the models for 50 epochs.

In our evaluation, we use graph classification architectures with two convectional layers
as described in the previous section (see Fig. 3.2 and Fig. 3.8). Convolutional layers from
EdgeConv and PointNet++ are used in the state-of-the-art architectures [38], [32]. Note
that the results achieved by us differ slightly from the reported results: EdgeConv 92.9%
and PointNet++ 90.7%.

Model Overall accuracy
EdgeConv 88.2%
PointNet++ 88.9%
LocalEdgeConv 71.4%

Table 4.4: Classification results on ModelNet40.

EdgeConv and PointNet++ perform substantially better than LocalEdgeConv in this
scenario. It is because EdgeConv and PointNet++ use global shape descriptors which are
more powerful than the local, intrinsic shape descriptors used by LocalEdgeConv.

In the next step, we evaluate how the models, trained on the standard ModelNet40
dataset, perform when shapes are randomly rotated and shifted in the embedding space.
The results are summarized in Table 4.5.

Model Overall accuracy
EdgeConv 9.3%
PointNet++ 11.3%
LocalEdgeConv 70.2%

Table 4.5: Classification results on ModelNet40. Each shape is randomly rotated and
shifted.

The results support our claim that LocalEdgeConv is robust to perturbations in the
position and the orientation of the shape. LocalEdgeConv significantly outperforms other
methods in this setting, achieving 70% accuracy vs 9-11% accuracy of other methods.

47

(a) image (b) 3D shape

Figure 4.11: Rotation axis of a 2D image and a 3D shape. The added degrees of freedom
in higher dimensions cause the number of possible rotations to increase.

Data augmentation, like the rotation, can benefit the performance of other methods
considered. Rotating 2D images is a commonly used technique which improves the com-
puter vision models’ robustness. Shapes are embedded in the 3D Euclidean space and
it means that rotations have an added degree of freedom. It implies that the 3D data
augmentation becomes increasingly more expensive. To visualise the issue let us consider
the task in which we augment an image with rotation increments of 10◦. Since we rotate
the image along one axis, for every image we will have 35 additional rotated images (with
rotation increments of: 10◦, 20◦, 30◦, ...), so in total 36 images. 3D shape can be rotated
along 3 axes, therefore the number of total possible orientations, with 10◦ rotation incre-
ment, is equal to 363 = 46, 656. This makes 3D data augmentation an infeasible task, the
curse of dimensionality. We think that our model, LocalEdgeConv, addresses this issue
well.

LocalEdgeConv avoids the need to pre-align the point cloud representation of the shape.
We showed that it can not only model human brains but also classify regular objects
such as a person, a car, and a bench (categories of ModelNet40). Data coming from the
LiDAR scanners, equipped in autonomous vehicles and some drones, is used for geospatial
mapping of the surroundings, e.g. the surroundings of the car on a street. We think that
our technique has a potential be applied in such scenarios to classify and detect objects,
as the incoming data is not pre-aligned.

48

Chapter 5

Applications

In this chapter, we investigate potential applications for our proposed convolutional opera-
tor. Our evaluation on the ModelNet40 dataset has shown that LocalEdgeConv can make
models robust to perturbations in the orientation and the position of the 3D shape (see
Section 4.5).

5.1 Shape representation learning

One application of LocalEdgeConv we have in mind is building a shape2vec model for the
extraction and representation of shape features in the latent space. Nowadays, physicians
use properties such as volume and diameter to describe, e.g. a tumor. Those features
are useful for human medical experts when deciding, e.g. on the kind of treatment for
tumors. But for an ML model, using a learned representation of a shape instead of human-
readable features might increase the models’ performance. Therefore, we suggest building
a shape2vec model which would be able to learn the representation of 3D shapes such as
tumors.

Figure 5.1: Proposed architecture of the shape2vec model.

The shape2vec model can be implemented as an autoencoder, trained on point cloud
representation of a shape, which utilises LocalEdgeConv in the encoding step.

5.2 Photogrammetry

Photogrammetry is the science of making measurements from photographs. The input to
photogrammetry are photographs, and the output is typically a map or a 3D model of some
real-world object or scene. Many of the maps we use today are created with photographs
taken from an aircraft.

A model can be built, using LocalEdgeConv, to classify objects in the 3D representation
of a scene, e.g. a street. In this scenario, a number of points are sampled from the 3D scene.
We can use LocalEdgeConv for object detection, implemented as a point classification task.
For object detection, we want to predict whether a given point is the part of an object

49

Figure 5.2: Street map obtained using the photogrammetry technique. Image taken from
the DroneDeploy website [13].

or not. It is similar to finding a bounding box in the classical object detection in an
image. Once we have a point cloud representation of the detected 3D shape, we can use an
architecture similar to the one in Section 3.6, to perform object classification and detect,
e.g. people and cars on the street.

5.3 Geospatial mapping

Geospatial mapping is a spatial analysis technique that typically employs systems capable
of capturing and processing spatial data. A common sensor that can capture the spatial
data is the LiDAR scanner. Since LiDAR scanners are commonly used in autonomous
vehicles, the detection of objects such as pedestrians, cars, or trees is an important task.

Figure 5.3: LiDAR scanner output representation the surroundings [20].

In this setting, we can use similar architecture to the one used for photogrammetry. A
set of points needs to be sampled from the data captured by the LiDAR scanner. Then
we need to perform two steps: object detection and object classification.

50

Chapter 6

Conclusion and Future Work

We have successfully implemented geometric deep learning models for brain shape analysis
and achieved better than baseline results on two datasets: UK Biobank and Cam-CAN.

This was done by surveying and benchmarking a few different architectures and se-
lecting the best ones. We applied a generic graph classification architecture with different
convolutional operators and were able to compare the expressiveness of each setup. It can
be observed that models treating shapes as point clouds achieve markedly better perfor-
mance than methods treating shapes as meshes (e.g. in biological sex classification, ∼10%
difference in the accuracy). We also noticed that shape registration creates an additional
layer of complexity when building models aimed to be robust for data coming from different
sources. Therefore; we proposed a new convolutional operator, dubbed LocalEdgeConv.
LocalEdgeConv is robust to perturbations in the embedding space of the shape, making
it rotation and translation invariant. Our experimental evaluation on the data, performed
on two different datasets (UK Biobank and Cam-CAN), showed that the model can gen-
eralize well for sex classification. For the age regression, we attribute the performance
loss to the very different age distributions between the datasets, with some age groups not
represented at all in the UK Biobank. We also benchmarked LocalEdgeConv on the Mod-
elNet40 dataset and achieved better than the state-of-the-art results in certain settings of
the problem.

Our work can be considered as a pioneer in applying Geometric Deep Learning for
brain shape analysis. We used the properties of convolutions on non-Euclidean domains
to our advantage, by designing an operator which avoids the need of shape registration.

We believe there are more applications in the medical world, other than brain shape
analysis, that would benefit from our findings. One of the applications we have in mind
is building a shape2vec model for the extraction and representation of shape features.
Nowadays, physicians use properties such as volume and diameter to describe (say) a
tumor. We think that shape2vec model would be able to extract more meaningful shape
features, which can be later used for other modelling tasks.

Our results are not constrained to medical settings only. We see a lot of potential
in applying our findings to a wide range of object classification tasks. One those tasks
is classifying data coming from LiDAR scanners for the geospatial mapping. In such
scenarios, the point cloud data does not come pre-aligned. LocalEdgeConv, an operator
robust to perturbations in location and orientation, can help existing systems detecting
cars or people on the streets.

Although we managed to achieve good results, there is still a lot of room for im-
provements before our methods are deployed in systems dealing with real-world medical
problems.

51

6.1 Future work

Even though we were able to achieve very good results with our models, there is a potential
for future work. The performance of machine learning models usually reflects the quality
of the training data. We think that the expansion of the UK Biobank dataset would be
beneficial, so that it includes subjects from underrepresented age groups. This would be
crucial for developing better models. One interesting area to research in greater detail
is data augmentation, as (for conventional computer vision applications) this can usually
yield substantial increases in the performance and generalizability of the model. Another
key area of improvement is refining the model design, by potentially employing some ideas
from deep convolutional neural networks (e.g. residual connections).

6.1.1 Data augmentation

Although there exist many standard data augmentation techniques for classical 2D com-
puter vision problems (like cropping, rotation, horizontal and vertical flipping), there are
no universal methods to augment 3D data such as shapes. Liu et al. [25] proposed a new
3D shape dataset augmentation method by learning the deformation between shapes in a
highly reduced latent space, while affording interactive control of shape generation. Apply-
ing their findings to augment the UK Biobank dataset could potentially further improve
the performance of the models.

6.1.2 Model design

In our work, we defined a generic graph classification architecture with two convolutional
layers, pooling, and dense layers. All the models considered in our work are defined in terms
of generic graph classification architecture. Alas, experimentation with deeper networks
with skip connections, like in ResNet, can potentially improve the performance as well.

52

Bibliography

[1] Raouf Benjemaa and Francis Schmitt. A solution for the registration of multiple 3d
point sets using unit quaternions. In European Conference on Computer Vision, pages
34–50. Springer, 1998.

[2] Dhruv Bhate, Clint Penick, Lara Ferry, and Christine Lee. Classification and Selection
of Cellular Materials in Mechanical Design: Engineering and Biomimetic Approaches.
Designs, 3(1):19, 2019.

[3] D. Boscaini, J. Masci, E. Rodolà, M. M. Bronstein, and D. Cremers. Anisotropic
diffusion descriptors. Computer Graphics Forum, 35(2):431–441, 2016.

[4] Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and Michael Bronstein. Learning
shape correspondence with anisotropic convolutional neural networks. Advances in
Neural Information Processing Systems, (Nips):3197–3205, 2016.

[5] Brilliant.org. Convolutional neural network. https://brilliant.org/wiki/
convolutional-neural-network/, 2020. [Retrieved 12:13, January 15, 2020].

[6] Michael Bronstein. Intrinsic deep learning on manifolds (spectral cnns, geodesic cnns,
anisotropic cnns, mixture model networks, embedding-based techniques). University
Lecture, 2017.

[7] Michael M. Bronstein, Joan Bruna, Yann Lecun, Arthur Szlam, and Pierre Van-
dergheynst. Geometric Deep Learning: Going beyond Euclidean data. IEEE Signal
Processing Magazine, 34(4):18–42, 2017.

[8] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral Networks
and Locally Connected Networks on Graphs. pages 1–14, 2013.

[9] Yueqi Cao, Didong Li, Huafei Sun, Amir H Assadi, and Shiqiang Zhang. Efficient
curvature estimation for oriented point clouds. arXiv preprint arXiv:1905.10725, 2019.

[10] Djork Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate
deep network learning by exponential linear units (ELUs). 4th International Confer-
ence on Learning Representations, ICLR 2016 - Conference Track Proceedings, pages
1–14, 2016.

[11] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural
networks on graphs with fast localized spectral filtering. Advances in Neural Informa-
tion Processing Systems, (Nips):3844–3852, 2016.

[12] L. Dora, S. Agrawal, R. Panda, and A. Abraham. State-of-the-art methods for brain
tissue segmentation: A review. IEEE Reviews in Biomedical Engineering, 10:235–249,
2017.

[13] DroneDeploy. Dronedeploy.com, 2020. [Online; accessed 08-June-2020].

53

https://brilliant.org/wiki/convolutional-neural-network/
https://brilliant.org/wiki/convolutional-neural-network/

[14] Timothy C et al. Durazzo. Cigarette smoking is associated with amplified age-related
volume loss in subcortical brain regions.

[15] Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning with Py-
Torch Geometric. (1):1–9, 2019.

[16] Moonen JE et al. Foster-Dingley JC, van der Grond J. Lower blood pressure is
associated with smaller subcortical brain volumes in older persons.

[17] P Gainza, F Sverrisson, F Monti, E Rodolà, D Boscaini, M M Bronstein, and B E
Correia. Deciphering interaction fingerprints from protein molecular surfaces using
geometric deep learning. Nature Methods, 2019.

[18] Paul Guerrero, Yanir Kleiman, Maks Ovsjanikov, and Niloy J Mitra. Pcpnet learning
local shape properties from raw point clouds. In Computer Graphics Forum, vol-
ume 37, pages 75–85. Wiley Online Library, 2018.

[19] http://www.ukbiobank.ac.uk/. Uk biobank. http://www.ukbiobank.ac.uk/
about-biobank-uk/, 2020. [Retrieved 18:13, January 19, 2020].

[20] Tony Kerr. How autonomous cars map the environment, 2020. [Online; accessed
08-June-2020].

[21] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization.
In 3rd International Conference on Learning Representations, ICLR 2015 - Conference
Track Proceedings, pages 1–15, 2015.

[22] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Con-
volutional Networks. pages 1–14, 2016.

[23] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. Deep learning, 2015.

[24] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-
ing applied to document recognition. In Proceedings of the IEEE, pages 2278–2324,
1998.

[25] Jiarui Liu, Qing Xia, Shuai Li, Aimin Hao, and Hong Qin. Quantitative and flexible
3D shape dataset augmentation via latent space embedding and deformation learning.
Computer Aided Geometric Design, 71:63–76, 2019.

[26] Jonathan Masci, Davide Boscaini, Michael M Bronstein, and Pierre Vandergheynst.
Geodesic Convolutional Neural Networks on Riemannian Manifolds. In Proceedings of
the IEEE International Conference on Computer Vision, volume 2015-Febru, pages
832–840, 2015.

[27] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda,
and Michael M. Bronstein. Geometric deep learning on graphs and manifolds using
mixture model CNNs. Proceedings - 30th IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, 2017-Janua:5425–5434, 2017.

[28] Federico Monti, Michael Bronstein, and Xavier Bresson. Geometric matrix comple-
tion with recurrent multi-graph neural networks. In Advances in Neural Information
Processing Systems, pages 3697–3707, 2017.

[29] Lia Morra, Silvia Delsanto, and Loredana Correale. Artificial Intelligence in Medical
Imaging: From Theory to Clinical Practice. 11 2019.

54

http://www.ukbiobank.ac.uk/about-biobank-uk/
http://www.ukbiobank.ac.uk/about-biobank-uk/

[30] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learning
(ICML-10), pages 807–814, 2010.

[31] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. PointNet: Deep learning
on point sets for 3D classification and segmentation. Proceedings - 30th IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua:77–85,
2017.

[32] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. PointNet++: Deep hierarchical
feature learning on point sets in a metric space. Advances in Neural Information
Processing Systems, 2017-Decem:5100–5109, 2017.

[33] Steven Rosenberg. pages vii–x. London Mathematical Society Student Texts. Cam-
bridge University Press, 1997.

[34] Jason R. Taylor, Nitin Williams, Rhodri Cusack, Tibor Auer, Meredith A. Shafto,
Marie Dixon, Lorraine K. Tyler, Cam-CAN, and Richard N. Henson. The Cambridge
Centre for Ageing and Neuroscience (Cam-CAN) data repository: Structural and
functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample.
NeuroImage, 144:262–269, 2017.

[35] Jana Vasković. Subcortical structures, 2020.

[36] Kirill Veselkov, Guadalupe Gonzalez, Shahad Aljifri, Dieter Galea, Reza Mirnezami,
Jozef Youssef, Michael Bronstein, and Ivan Laponogov. Hyperfoods: Machine intelli-
gent mapping of cancer-beating molecules in foods. Scientific Reports, 9:1–12, 2019.

[37] Yanpei Wang, Qinfang Xu, Jie Luo, Mingming Hu, and Chenyi Zuo. Effects of age
and sex on subcortical volumes. Frontiers in Aging Neuroscience, 11(SEP):1–12, 2019.

[38] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and
Justin M. Solomon. Dynamic graph Cnn for learning on point clouds. ACM Trans-
actions on Graphics, 38(5), 2019.

[39] Z. Wang, Y. Sun, Q. Shen, and L. Cao. Dilated 3d convolutional neural networks for
brain mri data classification. IEEE Access, 7:134388–134398, 2019.

[40] Wikipedia. Fabula AI — Wikipedia, the free encyclopedia. http://en.wikipedia.
org/w/index.php?title=Fabula%20AI&oldid=947615277, 2020. [Online; accessed
06-June-2020].

[41] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2015.

[42] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. A Comprehensive Survey on Graph Neural Networks. XX(Xx):1–22,
2019.

[43] Wayne Zachary. An information flow model for conflict and fission in small groups1.
Journal of anthropological research, 33, 11 1976.

[44] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep
learning architecture for graph classification. 32nd AAAI Conference on Artificial
Intelligence, AAAI 2018, pages 4438–4445, 2018.

55

http://en.wikipedia.org/w/index.php?title=Fabula%20AI&oldid=947615277
http://en.wikipedia.org/w/index.php?title=Fabula%20AI&oldid=947615277

[45] Qianru Zhang, Meng Zhang, Tinghuan Chen, Zhifei Sun, Yuzhe Ma, and Bei Yu. Re-
cent advances in convolutional neural network acceleration. Neurocomputing, 323:37–
51, 2019.

[46] Martin Zlocha, Qi Dou, and Ben Glocker. Improving RetinaNet for CT Lesion De-
tection with Dense Masks from Weak RECIST Labels. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 11769 LNCS:402–410, 2019.

56

	Introduction
	Objectives
	Challenges
	Contributions
	Report layout

	Background
	Learning on Euclidean domains
	Convolutional Neural Networks
	Convolutional layer
	Pooling layer
	Activation function
	Fully connected layer

	Intrinsic and extrinsic shape descriptors
	Extrinsic features
	Intrinsic features

	Preliminaries of Geometric Deep Learning
	Graph
	Manifold
	Point cloud
	Curvature
	Calculus on manifolds

	Spectral methods
	Spectral CNN
	ChebNet

	Spatial methods
	GCN
	GeodesicCNN
	Mixture Model Network (MoNet)
	PointNet
	PointNet++
	Dynamic Graph CNN

	Comparison between spectral and spatial methods
	Generic architecture for graph classification
	Generic message passing scheme
	PyTorch Geometric
	UK Biobank
	Cam-CAN dataset

	Analysis of Subcortical Brain
	Problem definition
	Role of subcortical brain
	Related work on subcortical brain

	Analysis goals
	Data pre-processing
	Multi-layer graph convolutional network
	Network architecture

	Ensemble method
	LocalEdgeConv - convolutional operator with translation and rotation invariance property
	Shape curvature - intrinsic feature with translation and rotation invariance property
	Image registration

	Evaluation
	Evaluation setup
	Models trained on a single brain part
	Biological sex classification
	Age regression
	Hypertension classification
	Smoking status classification
	Single brain part models summary

	Ensemble models
	Cam-CAN evaluation
	LocalEdgeConv benchmark - ModelNet40

	Applications
	Shape representation learning
	Photogrammetry
	Geospatial mapping

	Conclusion and Future Work
	Future work
	Data augmentation
	Model design

